Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Viruses ; 15(2)2023 01 25.
Article in English | MEDLINE | ID: covidwho-2216968

ABSTRACT

Rapid emergence of the SARS-CoV-2 variants has dampened the protective efficacy of existing authorized vaccines. Nanoparticle platforms offer a means to improve vaccine immunogenicity by presenting multiple copies of desired antigens in a repetitive manner which closely mimics natural infection. We have applied nanoparticle display combined with the SpyTag-SpyCatcher system to design encapsulin-mRBD, a nanoparticle vaccine displaying 180 copies of the monomeric SARS-CoV-2 spike receptor-binding domain (RBD). Here we show that encapsulin-mRBD is strongly antigenic and thermotolerant for long durations. After two immunizations, squalene-in-water emulsion (SWE)-adjuvanted encapsulin-mRBD in mice induces potent and comparable neutralizing antibody titers of 105 against wild-type (B.1), alpha, beta, and delta variants of concern. Sera also neutralizes the recent Omicron with appreciable neutralization titers, and significant neutralization is observed even after a single immunization.


Subject(s)
COVID-19 , Nanoparticles , Animals , Humans , Mice , COVID-19/prevention & control , SARS-CoV-2/genetics , Adjuvants, Immunologic
2.
Viruses ; 14(4)2022 04 13.
Article in English | MEDLINE | ID: covidwho-1786083

ABSTRACT

As existing vaccines fail to completely prevent COVID-19 infections or community transmission, there is an unmet need for vaccines that can better combat SARS-CoV-2 variants of concern (VOC). We previously developed highly thermo-tolerant monomeric and trimeric receptor-binding domain derivatives that can withstand 100 °C for 90 min and 37 °C for four weeks and help eliminate cold-chain requirements. We show that mice immunised with these vaccine formulations elicit high titres of antibodies that neutralise SARS-CoV-2 variants VIC31 (with Spike: D614G mutation), Delta and Omicron (BA.1.1) VOC. Compared to VIC31, there was an average 14.4-fold reduction in neutralisation against BA.1.1 for the three monomeric antigen-adjuvant combinations and a 16.5-fold reduction for the three trimeric antigen-adjuvant combinations; the corresponding values against Delta were 2.5 and 3.0. Our findings suggest that monomeric formulations are suitable for upcoming Phase I human clinical trials and that there is potential for increasing the efficacy with vaccine matching to improve the responses against emerging variants. These findings are consistent with in silico modelling and AlphaFold predictions, which show that, while oligomeric presentation can be generally beneficial, it can make important epitopes inaccessible and also carries the risk of eliciting unwanted antibodies against the oligomerisation domain.


Subject(s)
COVID-19 Vaccines , COVID-19 , Animals , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Mice , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
3.
Front Immunol ; 12: 765211, 2021.
Article in English | MEDLINE | ID: covidwho-1581337

ABSTRACT

Saturation suppressor mutagenesis was used to generate thermostable mutants of the SARS-CoV-2 spike receptor-binding domain (RBD). A triple mutant with an increase in thermal melting temperature of ~7°C with respect to the wild-type B.1 RBD and was expressed in high yield in both mammalian cells and the microbial host, Pichia pastoris, was downselected for immunogenicity studies. An additional derivative with three additional mutations from the B.1.351 (beta) isolate was also introduced into this background. Lyophilized proteins were resistant to high-temperature exposure and could be stored for over a month at 37°C. In mice and hamsters, squalene-in-water emulsion (SWE) adjuvanted formulations of the B.1-stabilized RBD were considerably more immunogenic than RBD lacking the stabilizing mutations and elicited antibodies that neutralized all four current variants of concern with similar neutralization titers. However, sera from mice immunized with the stabilized B.1.351 derivative showed significantly decreased neutralization titers exclusively against the B.1.617.2 (delta) VOC. A cocktail comprising stabilized B.1 and B.1.351 RBDs elicited antibodies with qualitatively improved neutralization titers and breadth relative to those immunized solely with either immunogen. Immunized hamsters were protected from high-dose viral challenge. Such vaccine formulations can be rapidly and cheaply produced, lack extraneous tags or additional components, and can be stored at room temperature. They are a useful modality to combat COVID-19, especially in remote and low-resource settings.


Subject(s)
Antibodies, Neutralizing/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Viral/immunology , Cricetinae , Immunogenicity, Vaccine/immunology , Mice , Spike Glycoprotein, Coronavirus/genetics
4.
ACS Infect Dis ; 7(8): 2546-2564, 2021 08 13.
Article in English | MEDLINE | ID: covidwho-1309427

ABSTRACT

The receptor binding domain (RBD) of SARS-CoV-2 is the primary target of neutralizing antibodies. We designed a trimeric, highly thermotolerant glycan engineered RBD by fusion to a heterologous, poorly immunogenic disulfide linked trimerization domain derived from cartilage matrix protein. The protein expressed at a yield of ∼80-100 mg/L in transiently transfected Expi293 cells, as well as CHO and HEK293 stable cell lines and formed homogeneous disulfide-linked trimers. When lyophilized, these possessed remarkable functional stability to transient thermal stress of up to 100 °C and were stable to long-term storage of over 4 weeks at 37 °C unlike an alternative RBD-trimer with a different trimerization domain. Two intramuscular immunizations with a human-compatible SWE adjuvanted formulation elicited antibodies with pseudoviral neutralizing titers in guinea pigs and mice that were 25-250 fold higher than corresponding values in human convalescent sera. Against the beta (B.1.351) variant of concern (VOC), pseudoviral neutralization titers for RBD trimer were ∼3-fold lower than against wildtype B.1 virus. RBD was also displayed on a designed ferritin-like Msdps2 nanoparticle. This showed decreased yield and immunogenicity relative to trimeric RBD. Replicative virus neutralization assays using mouse sera demonstrated that antibodies induced by the trimers neutralized all four VOC to date, namely B.1.1.7, B.1.351, P.1, and B.1.617.2 without significant differences. Trimeric RBD immunized hamsters were protected from viral challenge. The excellent immunogenicity, thermotolerance, and high yield of these immunogens suggest that they are a promising modality to combat COVID-19, including all SARS-CoV-2 VOC to date.


Subject(s)
COVID-19 , Thermotolerance , Animals , Antibodies, Viral , COVID-19/therapy , Guinea Pigs , HEK293 Cells , Humans , Immunization, Passive , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19 Serotherapy
5.
Structure ; 29(8): 834-845.e5, 2021 08 05.
Article in English | MEDLINE | ID: covidwho-1208677

ABSTRACT

Spike (S) glycoprotein of SARS-CoV2 exists chiefly in two conformations, open and closed. Most previous structural studies on S protein have been conducted at pH 8.0, but knowledge of the conformational propensities under both physiological and endosomal pH conditions is important to inform vaccine development. Our current study employed single-particle cryoelectron microscopy to visualize multiple states of open and closed conformations of S protein at physiological pH 7.4 and near-physiological pH 6.5 and pH 8.0. Propensities of open and closed conformations were found to differ with pH changes, whereby around 68% of S protein exists in open conformation at pH 7.4. Furthermore, we noticed a continuous movement in the N-terminal domain, receptor-binding domain (RBD), S2 domain, and stalk domain of S protein conformations at various pH values. Several key residues involving RBD-neutralizing epitopes are differentially exposed in each conformation. This study will assist in developing novel therapeutic measures against SARS-CoV2.


Subject(s)
SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Cryoelectron Microscopy , Humans , Hydrogen-Ion Concentration , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , SARS-CoV-2/chemistry , Single Molecule Imaging
6.
J Biol Chem ; 296: 100025, 2021.
Article in English | MEDLINE | ID: covidwho-1066050

ABSTRACT

Virtually all SARS-CoV-2 vaccines currently in clinical testing are stored in a refrigerated or frozen state prior to use. This is a major impediment to deployment in resource-poor settings. Furthermore, several of them use viral vectors or mRNA. In contrast to protein subunit vaccines, there is limited manufacturing expertise for these nucleic-acid-based modalities, especially in the developing world. Neutralizing antibodies, the clearest known correlate of protection against SARS-CoV-2, are primarily directed against the receptor-binding domain (RBD) of the viral spike protein, suggesting that a suitable RBD construct might serve as a more accessible vaccine ingredient. We describe a monomeric, glycan-engineered RBD protein fragment that is expressed at a purified yield of 214 mg/l in unoptimized, mammalian cell culture and, in contrast to a stabilized spike ectodomain, is tolerant of exposure to temperatures as high as 100 °C when lyophilized, up to 70 °C in solution and stable for over 4 weeks at 37 °C. In prime:boost guinea pig immunizations, when formulated with the MF59-like adjuvant AddaVax, the RBD derivative elicited neutralizing antibodies with an endpoint geometric mean titer of ∼415 against replicative virus, comparing favorably with several vaccine formulations currently in the clinic. These features of high yield, extreme thermotolerance, and satisfactory immunogenicity suggest that such RBD subunit vaccine formulations hold great promise to combat COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2/immunology , Antibodies, Viral/biosynthesis , COVID-19 Vaccines/biosynthesis , COVID-19/prevention & control , Receptors, Virus/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Animals , Antibodies, Neutralizing/biosynthesis , Binding Sites , COVID-19/immunology , COVID-19/virology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Female , Guinea Pigs , HEK293 Cells , Hot Temperature , Humans , Immunogenicity, Vaccine , Models, Molecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Domains , Protein Interaction Domains and Motifs , Protein Stability , Receptors, Virus/chemistry , Receptors, Virus/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/immunology , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccine Potency
SELECTION OF CITATIONS
SEARCH DETAIL